首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Comparison of Discrimination Methods for High Dimensional Data
  • 本地全文:下载
  • 作者:Muni S. Srivastava ; Tatsuya Kubokawa
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2007
  • 卷号:37
  • 期号:1
  • 页码:123-134
  • DOI:10.14490/jjss.37.123
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:In microarray experiments, the dimension p of the data is very large but there are only a few observations N on the subjects/patients. In this article, the problem of classifying a subject into one of two groups, when p is large, is considered. Three procedures based on the Moore-Penrose inverse of the sample covariance matrix, and an empirical Bayes estimate of the precision matrix are proposed and compared with the DLDA procedure.
  • 关键词:classification;discrimination analysis;minimum distance;Moore-Penrose inverse
国家哲学社会科学文献中心版权所有