首页    期刊浏览 2025年07月31日 星期四
登录注册

文章基本信息

  • 标题:Asymptotic Efficiency of Estimating Function Estimators for Nonlinear Time Series Models
  • 本地全文:下载
  • 作者:Tomoyuki Amano
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2009
  • 卷号:39
  • 期号:2
  • 页码:209-231
  • DOI:10.14490/jjss.39.209
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:The conditional least squares (CLS) estimator proposed by Tj\o stheim (1986) is convenient and important for nonlinear time series models. However this convenient estimator is not generally asymptotically efficient. Hence Chandra and Taniguchi (2001) proposed a G estimator based on Godambe's asymptotically optimal estimating function. For important nonlinear time series models, e.g., RCA, GARCH, nonlinear AR models, we show the asymptotic variance of the G estimator is smaller than that of the CLS estimator, and the G estimator is asymptotically efficient if the innovation is Gaussian. Numerical studies for the comparison of the asymptotic variance of the G estimator, that of the CLS estimator and the Fisher information are also given. They elucidate some interesting features of the G estimator.
  • 关键词:Asymptotic efficiency;conditional least squares estimator;estimating function;GARCH model;local asymptotic normality;nonlinear AR model;RCA model
国家哲学社会科学文献中心版权所有