首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Empirical Bayes Information Criterion for Selecting Variables in Linear Mixed Models
  • 本地全文:下载
  • 作者:Tatsuya Kubokawa ; Muni S. Srivastava
  • 期刊名称:JOURNAL OF THE JAPAN STATISTICAL SOCIETY
  • 印刷版ISSN:1882-2754
  • 电子版ISSN:1348-6365
  • 出版年度:2010
  • 卷号:40
  • 期号:1
  • 页码:111-131
  • DOI:10.14490/jjss.40.111
  • 出版社:JAPAN STATISTICAL SOCIETY
  • 摘要:The paper addresses the problem of selecting variables in linear mixed models (LMM)νll. We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.
  • 关键词:Akaike information criterion;Bayesian information criterion;consistency;empirical Bayes method;linear mixed model;maximum likelihood estimator;nested error regression model;random effect;restricted maximum likelihood estimator;selection of variables
国家哲学社会科学文献中心版权所有