摘要:Installing a separation device for undesirable volatile substances represented by dimethyl sulfide (DMS) in wort boiling systems is a common way to reduce the thermal stress and maintain the beer’s flavor stability (characterized by the thiobarbituric acid (TBA) value), but most of these separation devices need to provide additional vacuum or primary thermal energy. This research shows that it can produce self-evaporation that consumes its own sensible heat when wort is in the state of turbulent film. Therefore, a new gas-liquid separation system named the multilayer centrifugal film-forming device (similar to the spinning cone column (SCC)) is proposed, which can strengthen self-evaporation through wort turbulent film and create gas phase conditions for the separation of undesirable volatile substances. The results show that up to 91.6% of the content of
DMS in wort could be significantly removed by centrifugal film self-evaporation. The TBA value of wort was reduced by more than 15%, and the wort was not found to be oxidized. Compared with the traditional boiling method, the multi-layer centrifugal film-forming device can significantly save primary energy consumption and reduce energy consumption by 216.4 kJ per liter of wort during the boiling and cooling process.