首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Unidirectional mannitol synthesis of Acinetobacter baumannii MtlD is facilitated by the helix–loop–helix-mediated dimer formation
  • 本地全文:下载
  • 作者:Heng-Keat Tam ; Patricia König ; Stephanie Himpich
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2107994119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Mannitol biosynthesis is essential for Acinetobacter baumannii to cope with osmotic stress. Currently, only Pseudomonas putida, Acinetobacter baylyi, and A. baumannii are able to de novo synthesize mannitol by a structurally unique bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). The molecular mechanism of reduction and dephosphorylation of fructose-6-phosphate to mannitol is highly dependent on the substrate shuffling from one protomer to the other protomer by a unique helix–loop–helix domain–mediated dimer formation, thus ensuring unidirectional and efficient biosynthesis of mannitol. These observations support an evolutionary adaptation of AbMtlD by fusion of dehydrogenase and phosphatase domains to facilitate efficient unidirectional enzymatic production of mannitol, unifying regulatory control and minimizing the intracellular concentration of toxic mannitol-1-phosphate during salt stress. Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix–loop–helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.
  • 关键词:enAcinetobacter baumanniimannitolcompatible solutesdehydrogenasephosphatase
国家哲学社会科学文献中心版权所有