期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:14
DOI:10.1073/pnas.2115608119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
In marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.
Symbiont specificity, both at the phylotype and strain level, can have profound consequences for host ecology and evolution. However, except for insights from a few model symbiosis systems, the degree of partner fidelity and the influence of host versus environmental factors on symbiont composition are still poorly understood. Nutritional symbioses between invertebrate animals and chemosynthetic bacteria at deep-sea hydrothermal vents are examples of relatively selective associations, where hosts affiliate only with particular, environmentally acquired phylotypes of gammaproteobacterial or campylobacterial symbionts. In hydrothermal vent snails of the sister genera
Alviniconcha and
Ifremeria, this phylotype specificity has been shown to play a role in habitat distribution and partitioning among different holobiont species. However, it is currently unknown if fidelity goes beyond species-level associations and influences genetic structuring, connectivity, and habitat adaptation of holobiont populations. We used metagenomic analyses to assess sequence variation in hosts and symbionts and identify correlations with geographic and environmental factors. Our analyses indicate that host populations are not differentiated across an ∼800-km gradient, while symbiont populations are clearly structured between vent locations due to a combination of neutral and selective processes. Overall, these results suggest that host individuals flexibly associate with locally adapted strains of their specific symbiont phylotypes, which supports a long-standing but untested paradigm of the benefits of horizontal transmission. Symbiont strain flexibility in these snails likely enables host populations to exploit a range of habitat conditions, which might favor widespread genetic connectivity and ecological resilience unless physical dispersal barriers are present.
关键词:enchemosynthetic symbiosishydrothermal ventshost–symbiont population genomicshabitat adaptationsymbiont transmission and specificity