标题:LIM Homeobox Transcription Factor 1-β Expression is Upregulated in Patients with Osteolysis after Total Ankle Arthroplasty and Inhibits Receptor Activator of Nuclear Factor- κB Ligand-Induced Osteoclast Differentiation in Vitro
出版社:The Korean Society for Bone and Mineral Research
摘要:Background
Osteolysis is one of the most common problems that occurs after total hip and knee arthroplasty and has recently become a significant problem after total ankle arthroplasty (TAA). In this study, we investigated the role of LIM homeobox transcription factor 1-β (Lmx1b) in osteoclast differentiation. By evaluating the expression profiles associated with osteolysis following TAA treatment, Lmx1b was found to be differentially expressed in patients with osteolysis after TAA.
Methods
To identify the important genes associated with osteolysis after TAA, RNA sequencing was performed by analyzing 8 patient samples: 5 primary TAA samples (control group) and 3 TAA samples revised for flexion instability (osteolysis group). By analyzing the differentially expressed genes and gene ontologies, Lmx1b expression was found to be upregulated in the osteolysis group compared to that in the control group. Focusing on the role of Lmx1b in bone cells, Lmx1b was overexpressed by a retrovirus in osteoclast precursor cells. The cultured cells were stained with tartrate-resistant acid phosphatase, and the expression of osteoclast-related genes was analyzed using real-time polymerase chain reaction.
Results
Lmx1b overexpression in osteoclast precursors suppresses osteoclast formation and resorptive activity. The expression of osteoclast marker genes was significantly reduced during osteoclast differentiation by Lmx1b overexpression. Furthermore, Lmx1b is associated with nuclear factor of activated T cells 1 (NFATc1) and inhibited NFATc1 translocation into the nucleus.
Conclusions
These results provide novel insights into the anti-bone resorptive effect of Lmx1b on osteolysis after TAA and may lead to the development of effective preventative and therapeutic strategies for peri-implant osteolysis.