首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:50S subunit recognition and modification by the Mycobacterium tuberculosis ribosomal RNA methyltransferase TlyA
  • 本地全文:下载
  • 作者:Zane T. Laughlin ; Suparno Nandi ; Debayan Dey
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2120352119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The bacterial ribosome is an important target for antibiotics used to treat infection. However, resistance to these essential drugs can arise through changes in ribosomal RNA (rRNA) modification patterns through the action of intrinsic or acquired rRNA methyltransferase enzymes. How these antibiotic resistance-associated enzymes recognize their ribosomal targets for site-specific modification is currently not well defined. Here, we uncover the molecular basis for large ribosomal (50S) subunit substrate recognition and modification by the Mycobacterium tuberculosis methyltransferase TlyA, necessary for optimal activity of the antitubercular drug capreomycin. From this work, recognition of complex rRNA structures distant from the site of modification and “flipping” of the target nucleotide base both emerge as general themes in ribosome recognition for bacterial rRNA modifying enzymes. Changes in bacterial ribosomal RNA (rRNA) methylation status can alter the activity of diverse groups of ribosome-targeting antibiotics. These modifications are typically incorporated by a single methyltransferase that acts on one nucleotide target and rRNA methylation directly prevents drug binding, thereby conferring drug resistance. Loss of intrinsic methylation can also result in antibiotic resistance. For example, Mycobacterium tuberculosis becomes sensitized to tuberactinomycin antibiotics, such as capreomycin and viomycin, due to the action of the intrinsic methyltransferase TlyA. TlyA is unique among antibiotic resistance-associated methyltransferases as it has dual 16S and 23S rRNA substrate specificity and can incorporate cytidine-2′-O-methylations within two structurally distinct contexts. Here, we report the structure of a mycobacterial 50S subunit-TlyA complex trapped in a postcatalytic state with a S-adenosyl- l-methionine analog using single-particle cryogenic electron microscopy. Together with complementary functional analyses, this structure reveals critical roles in 23S rRNA substrate recognition for conserved residues across an interaction surface that spans both TlyA domains. These interactions position the TlyA active site over the target nucleotide C2144, which is flipped from 23S Helix 69 in a process stabilized by stacking of TlyA residue Phe157 on the adjacent A2143. Base flipping may thus be a common strategy among rRNA methyltransferase enzymes, even in cases where the target site is accessible without such structural reorganization. Finally, functional studies with 30S subunit suggest that the same TlyA interaction surface is employed to recognize this second substrate, but with distinct dependencies on essential conserved residues.
  • 关键词:enribosomeRNA modificationantibiotic resistancemycobacteriamethyltransferase
国家哲学社会科学文献中心版权所有