首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Cytokinin–CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants
  • 本地全文:下载
  • 作者:Joseph Cammarata ; Christopher Morales Farfan ; Michael J. Scanlon
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:14
  • DOI:10.1073/pnas.2116860119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Plants grow from their tips. The gametophore (shoot-like organ) tip of the moss Physcomitrium patens is a single cell that performs the same functions as those of multicellular flowering plants, producing the cells that make leaves and regenerating new stem cells to maintain the shoot tip. Several pathways, including CLAVATA and cytokinin hormonal signaling, regulate stem cell abundance in flowering plants and in mosses, although the mechanisms whereby these pathways regulate stem cell abundance and their conservation between these plant lineages is poorly understood. Using moss, we investigated how PpCLAVATA and cytokinin signaling interact. Overall, we found evidence that PpCLAVATA and cytokinin signaling interact similarly in moss and flowering plants, despite their distinct anatomies, life cycles, and evolutionary distance. Plant shoots grow from stem cells within shoot apical meristems (SAMs), which produce lateral organs while maintaining the stem cell pool. In the model flowering plant Arabidopsis, the CLAVATA (CLV) pathway functions antagonistically with cytokinin signaling to control the size of the multicellular SAM via negative regulation of the stem cell organizer WUSCHEL (WUS). Although comprising just a single cell, the SAM of the model moss Physcomitrium patens (formerly Physcomitrella patens) performs equivalent functions during stem cell maintenance and organogenesis, despite the absence of WUS-mediated stem cell organization. Our previous work showed that the stem cell–delimiting function of the receptors CLAVATA1 (CLV1) and RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) is conserved in the moss P. patens. Here, we use P. patens to assess whether CLV–cytokinin cross-talk is also an evolutionarily conserved feature of stem cell regulation. Application of cytokinin produces ectopic stem cell phenotypes similar to Ppclv1a, Ppclv1b, and Pprpk2 mutants. Surprisingly, cytokinin receptor mutants also form ectopic stem cells in the absence of cytokinin signaling. Through modeling, we identified regulatory network architectures that recapitulated the stem cell phenotypes of Ppclv1a, Ppclv1b, and Pprpk2 mutants, cytokinin application, cytokinin receptor mutations, and higher-order combinations of these perturbations. These models predict that PpCLV1 and PpRPK2 act through separate pathways wherein PpCLV1 represses cytokinin-mediated stem cell initiation, and PpRPK2 inhibits this process via a separate, cytokinin-independent pathway. Our analysis suggests that cross-talk between CLV1 and cytokinin signaling is an evolutionarily conserved feature of SAM homeostasis that preceded the role of WUS in stem cell organization.
  • 关键词:enplant biologydevelopmentCLAVATAcytokinin
国家哲学社会科学文献中心版权所有