首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Approximate Bayesian neural Doppler imaging
  • 本地全文:下载
  • 作者:A.Asensio Ramos ; C.J.Díaz Baso ; O.Kochukhov
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2022
  • 卷号:658
  • 页码:1-14
  • DOI:10.1051/0004-6361/202142027
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Aims. The non-uniform surface temperature distribution of rotating active stars is routinely mapped with the Doppler imaging technique. Inhomogeneities in the surface produce features in high-resolution spectroscopic observations that shift in wavelength because of the Doppler effect, depending on their position on the visible hemisphere. The inversion problem has been systematically solved using maximum a posteriori regularized methods assuming smoothness or maximum entropy. Our aim in this work is to solve the full Bayesian inference problem by providing access to the posterior distribution of the surface temperature in the star compatible with the observations. Methods. We use amortized neural posterior estimation to produce a model that approximates the high-dimensional posterior distribution for spectroscopic observations of selected spectral ranges sampled at arbitrary rotation phases. The posterior distribution is approximated with conditional normalizing flows, which are flexible, tractable, and easy-to-sample approximations to arbitrary distributions. When conditioned on the spectroscopic observations, these normalizing flows provide a very efficient way of obtaining samples from the posterior distribution. The conditioning on observations is achieved through the use of Transformer encoders, which can deal with arbitrary wavelength sampling and rotation phases. Results. Our model can produce thousands of posterior samples per second, each one accompanied by an estimation of the logprobability. Our exhaustive validation of the model for very high-signal-to-noise observations shows that it correctly approximates the posterior, albeit with some overestimation of the broadening. We apply the model to the moderately fast rotator II Peg, producing the first Bayesian map of its temperature inhomogenities. We conclude that conditional normalizing flows are a very promising tool for carrying out approximate Bayesian inference in more complex problems in stellar physics, such as constraining the magnetic properties using polarimetry.
  • 关键词:stars: atmospheres;stars: activity;line: profiles;methods: data analysis;stars: individual: II Peg
国家哲学社会科学文献中心版权所有