首页    期刊浏览 2024年07月22日 星期一
登录注册

文章基本信息

  • 标题:Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
  • 本地全文:下载
  • 作者:Weijie Zou ; Yi Zhou ; Shixin Wang
  • 期刊名称:Natural Hazards and Earth System Sciences
  • 电子版ISSN:2195-9269
  • 出版年度:2022
  • 卷号:22
  • 期号:6
  • 页码:2081-2097
  • DOI:10.5194/nhess-22-2081-2022
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Landslide dams are caused when landslide materials block rivers. After the occurrence of large-scale landslides, it is necessary to conduct a large-scale investigation of barrier lakes and a rapid risk assessment. Remote sensing is an important means to achieve this goal. However, at present, remote sensing is only used for the monitoring and extraction of hydrological parameters, without predicting the potential hazard of the landslide dam. The key parameters of the barrier dam, such as the dam height and the maximum volume, still need to be obtained based on a field investigation, which is time consuming. Our research proposes a procedure that is able to calculate the height of the landslide dam and the maximum volume of the barrier lake using a single remote-sensing image and a pre-landslide DEM. The procedure includes four modules: (a) determining the elevation of the lake level, (b) determining the elevation of the bottom of the dam, (c) calculating the highest height of the dam and (d) predicting the lowest crest height of the dam and the maximum volume. Finally, a sensitivity analysis of the parameters used during the procedure and an analysis of the influence of the image resolution is carried out. This procedure is mainly demonstrated through the Baige landslide dam and the Hongshiyan landslide dam. A single remote-sensing image and a pre-landslide DEM are used to predict the height of each dam and the key parameters of the dam break, which are in good agreement with the measured data. This procedure can effectively support quick decision making regarding hazard mitigation.
国家哲学社会科学文献中心版权所有