首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
  • 本地全文:下载
  • 作者:Melanie Fischer ; Jana Brettin ; Sigrid Roessner
  • 期刊名称:Natural Hazards and Earth System Sciences
  • 电子版ISSN:2195-9269
  • 出版年度:2022
  • 卷号:22
  • 期号:9
  • 页码:3105-3123
  • DOI:10.5194/nhess-22-3105-2022
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center’s River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s−1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 % of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed.
国家哲学社会科学文献中心版权所有