摘要:Tropical cold point tropopause temperature (CPT) anomalies determine lower stratospheric water vapor (LSWV) variations, leading to a high correlation between variations in tropical average CPT and changes in tropical average LSWV. However, this high correlation is only found in winter and spring. This work revisits the factors controlling LSWV variations using observations and simulations over the past ~40 years. It is found that the first and second empirical orthogonal function (EOF) modes of tropical CPT variations together explain the tropical average LSWV changes much better than the tropical average CPT variations. The high correlation between the first and second EOF modes of tropical CPT variations and tropical average LSWV changes holds in all four seasons. A further analysis shows that the first and second EOF modes of tropical CPT variations are related to canonical El Niño–Southern Oscillation (ENSO) activity and sea surface temperature (SST) variations in the central Pacific Ocean, respectively. ENSO Modoki is also an important factor that affects LSWV variations by influencing the vertical velocity at the tropopause. The quasi-biennial oscillation (QBO) affects the CPT, and is the third process modulating the LSWV changes. The simulations also support the results.