首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Observationally constrained aerosol–cloud semi-direct effects
  • 本地全文:下载
  • 作者:Robert J. Allen ; Anahita Amiri-Farahani ; Jean-Francois Lamarque
  • 期刊名称:npj Climate and Atmospheric Science
  • 电子版ISSN:2397-3722
  • 出版年度:2022
  • 卷号:5
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41612-019-0073-9
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:Absorbing aerosols, like black carbon (BC), give rise to rapid adjustments, and the associated perturbation to the atmospheric temperature structure alters the cloud distribution. The level of scientific understanding of these rapid cloud adjustments—otherwise known as semi-direct effects (SDEs)—is considered low, with models indicating a likely negative (−0.44 to +0.1 Wm−2) forcing. Recent studies suggest this negative SDE is primarily driven by decreases in high-level clouds and enhanced longwave cooling. Here, we investigate the SDE using multiple models driven by observationally constrained fine-mode aerosol forcing without dust and sea salt. Unlike aerosol simulations, which yield a relatively vertically uniform aerosol atmospheric heating profile with significant upper-tropospheric heating, observation-based heating peaks in the lower-troposphere and then decays to zero in the mid-troposphere. We find a significant global annual mean decrease in low- and mid-level clouds, and weaker decreases in high-level clouds, which leads to a positive SDE dominated by shortwave radiation. Thus, in contrast to most studies, we find a robust positive SDE, implying cloud adjustments act to warm the climate system. Sensitivity tests with identical average, but vertically uniform observationally constrained aerosol atmospheric heating result in a negative SDE, due to enhanced longwave cooling as a result of large reductions in high-level clouds. Our results therefore suggest that model simulations lead to a negatively biased SDE, due to an aerosol atmospheric heating profile that is too vertically uniform.
国家哲学社会科学文献中心版权所有