首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:New particle formation leads to cloud dimming
  • 本地全文:下载
  • 作者:Ryan C. Sullivan ; Paola Crippa ; Hitoshi Matsui
  • 期刊名称:npj Climate and Atmospheric Science
  • 电子版ISSN:2397-3722
  • 出版年度:2022
  • 卷号:5
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41612-018-0019-7
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, contributes significantly to atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth’s surface. Herein we present one of the first numerical experiments conducted at sufficiently high resolution and fidelity to quantify the impact of NPF on cloud radiative properties. Consistent with observations in spring over the Midwestern USA, NPF occurs frequently and on regional scales. However, NPF is not associated with enhancement of regional cloud albedo. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes, reduces CCN-sized particle concentrations, and reduces cloud albedo. The reduction in cloud albedo on NPF days results in a domain average positive top of atmosphere cloud radiative forcing, and thus warming, of 10 W m−2 and up to ~50 W m−2 in individual grid cells relative to a simulation in which NPF is excluded.
国家哲学社会科学文献中心版权所有