首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Forecasting saturation in the Emergency Department: a comparison of queuing data-driven approaches
  • 本地全文:下载
  • 作者:Adrien Wartelle ; Farah Mourad-Chehade ; Farouk Yalaoui
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:10
  • 页码:1556-1561
  • DOI:10.1016/j.ifacol.2022.09.612
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Emergency Departments are highly stochastic environments caused by the unscheduled patients’ arrivals and the diverse nature of their health problems. Health services research, statistical modeling and operational research all attempt to give tools and strategies to manage crowding through crowding scores, forecasting and optimization models. This paper proposes a novel approach that evaluates crowding using a new saturation indicator. It also sets an original data-driven queuing network to model the system and help forecasting crowding and then optimizes it. This study is illustrated using data from the Emergency Department of Troyes hospital.
  • 关键词:Machine learning-based forecasting model;Data-driven queuing model;Saturation;Emergency department;Crowding indicator;Simulation
国家哲学社会科学文献中心版权所有