首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Integrated Prescriptive Maintenance and Production Planning: a Machine Learning Approach for the Development of an Autonomous Decision Support Agent
  • 本地全文:下载
  • 作者:Mohaiad Elbasheer ; Francesco Longo ; Giovanni Mirabelli
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:10
  • 页码:2605-2610
  • DOI:10.1016/j.ifacol.2022.10.102
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Machine Learning (ML) practice represents a vital construct for developing intelligent Cyber-Physical Production Systems (CPPS) capable of making timely optimization for Maintenance and Planning actions. Integrating Adaptive Production Planning and Prescriptive Maintenance (PsM) in future factories provides a novel perspective for flexibility, customization, and resilience of production plans. To this end, we propose a framework for developing an intelligent Decision Support Agent (DSA) for integrated PsM and production planning and control (PPC) based on Reinforcement Learning. The paper highlights the practical implications of developing an autonomous DSA from an ML perspective using a demonstrative use-case of integrated Maintenance and PPC.
  • 关键词:Prescriptive Maintenance;Production Planning & Control;Intelligent Agents;Machine Learning;Reinforcement Learning;Conceptual Framework
国家哲学社会科学文献中心版权所有