首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Optimal BP Neural Network Track Prediction Method Based on a GA-ACO Hybrid Algorithm
  • 本地全文:下载
  • 作者:Zheng, Yuanzhou ; Lv, Xuemeng ; Qian, Long
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:10
  • 页码:1-18
  • DOI:10.3390/jmse10101399
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Ship position prediction is the key to inland river and sea navigation warning. Maritime traffic control centers, according to ship position monitoring, ship position prediction and early warning, can effectively avoid collisions. However, the prediction accuracy and computational efficiency of the ship’s future position are the key problems to be solved. In this paper, a path prediction model (GA–ACO–BP) combining a genetic algorithm, an ant colony algorithm and a BP neural network is proposed. The model is first used to perform deep pretreatment of raw AIS data, with the main body of the BP neural network as a prediction model, focused on the complementarity between genetic and ant colony algorithms, to determine the ant colony initialization pheromone concentration by the genetic algorithm, design the hybrid genetic–ant colony algorithm, and optimize this to the optimal weight and threshold of the BP neural network, in order to improve the convergence speed and effect of the traditional BP neural network. The test results show that the model greatly improves the fitness of track prediction, with higher accuracy and within a shorter time, and has a certain real-time and extensibility for track prediction of different river segments.
  • 关键词:track prediction; genetic algorithm; ant colony algorithm; BP neural network; AIS data
国家哲学社会科学文献中心版权所有