首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A COLREGs-Compliant Collision Avoidance Decision Approach Based on Deep Reinforcement Learning
  • 本地全文:下载
  • 作者:Wang, Weiqiang ; Huang, Liwen ; Liu, Kezhong
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:7
  • 页码:1-26
  • DOI:10.3390/jmse10070944
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:It is crucial to develop a COLREGs-compliant intelligent collision avoidance system for the safety of unmanned ships during navigation. This paper proposes a collision avoidance decision approach based on the deep reinforcement learning method. A modified collision avoidance framework is developed that takes into consideration the characteristics of different encounter scenarios. Hierarchical reward functions are established to assign reward values to constrain the behavior of the agent. The collision avoidance actions of the agent under different encounter situations are evaluated on the basis of the COLREGs to ensure ship safety and compliance during navigation. The deep Q network algorithm is introduced to train the proposed collision avoidance decision framework, while various simulation experiments are performed to validate the developed collision avoidance model. Results indicate that the proposed method can effectively perform tasks that help ships avoid collisions in different encounter scenarios. The proposed approach is a novel attempt for intelligent collision avoidance decisions of unmanned ships.
  • 关键词:collision avoidance; unmanned ships; deep reinforcement learning; COLREGs; reward functions
国家哲学社会科学文献中心版权所有