首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Prediction Method for Ocean Wave Height Based on Stacking Ensemble Learning Model
  • 本地全文:下载
  • 作者:Zhan, Yu ; Zhang, Huajun ; Li, Jianhao
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2022
  • 卷号:10
  • 期号:8
  • 页码:1-16
  • DOI:10.3390/jmse10081150
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Wave heights are important factors affecting the safety of maritime navigation. This study proposed a stacking ensemble learning method to improve the prediction accuracy of wave heights. We analyzed the correlation between wave heights and other oceanic hydrological features, according to eleven features, such as measurement time, horizontal velocity, temperature, and pressure, as the model inputs. A fusion model consisting of two layers was established according to the principle of stacking ensemble learning. The first layer used the extreme gradient boosting algorithm, a light gradient boosting machine, random forest, and adaptive boosting to determine the deep relations between the wave heights and the input features. The second layer used a linear regression model to fit the relation between the first layer outputs and the actual wave heights, using the data from the four models of the first layer. The fusion model was trained based on the 5-fold cross-verification algorithm. This paper used real data to test the performances of the proposed fusion model, and the results showed that the mean absolute error and the mean squared error of the fusion model were at least 35.79% and 50.52% better than those of the four models.
  • 关键词:ocean wave height; stacking; ensemble learning; machine learning
国家哲学社会科学文献中心版权所有