标题:Environmental and Economic Life-Cycle Assessments of Household Food Waste Management Systems: A Comparative Review of Methodology and Research Progress
摘要:Household food waste (HFW) is the main component of municipal solid waste (MSW). Appropriate HFW management strategies could reduce the environmental burdens and economic costs to society. Life-cycle thinking is an effective decision-making tool for MSW management. This paper compares the three main environmental and economic assessment methodologies, i.e., societal life-cycle costing (societal LCC), environmental cost-effectiveness (ECE) analysis, and multicriteria analysis (MCA) in terms of the definitions, method frameworks, and their advantages/disadvantages. Most reviewed studies applied the environmental life-cycle costing (ELCC) method, a simplified ECE, which does not involve interactive quantitative comparisons between environmental and economic benefits. Further attention should be paid to the coordination between life-cycle assessment (LCA) and life-cycle costing (LCC), the monetization coefficient in external cost calculation of societal LCC, and the standardization and evaluation approaches of ECE. HFW prevention is rarely considered in the reviewed literature but was demonstrated as the best route over treatment or utilization. Anaerobic digestion is environmentally preferable to composting and landfilling; it is comparable to biodiesel production, feeding conversation, and incineration. From the perspective of economic costs (including societal LCC), the ranking of treatment technologies varied a lot from one study to another, attributable to the diverse evaluation methods and different data sources. To improve the environmental and economic assessment approaches to HFW management, an inventory database (e.g., food waste properties, technical treatment parameters, material flow, and fund flow data) suitable for HFW should be constructed. When establishing the system boundaries, the processes of source sorting, collection and transportation, and by-product handling should be coherent with the investigated treatment technology.