首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Study on the Optimization of Proportion of Fly Ash-Based Solid Waste Filling Material with Low Cost and High Reliability
  • 本地全文:下载
  • 作者:Chen, Denghong ; Cao, Tianwei ; Yang, Ke
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:14
  • 页码:1-15
  • DOI:10.3390/su14148530
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:In order to solve the problem of the high cost of coal-based solid waste bulk stacking and paste filling in the large-scale coal electrification base in East NingXia, in this study, fly ash is skillfully used to replace the broken coal gangue as the mixed filling material. As using a jaw crusher for crushing large coal gangue is expensive, and its energy consumption is relatively high, paste filler using fly ash as aggregate is studied through micro and macro test analyses. Using response surface methodology design software, 29 groups of mix proportion schemes are designed to obtain the best mix proportion. In addition, the radar results of slump, slump flow, and comprehensive strength are obtained by the normalization method. According to the radar chart results of the three normalized indexes, the optimal ratio parameters are as follows: the fly ash in solid phase is 79%, the mass of fly ash to the mass of cement (FA/C) is 6:1, the solid mass concentration is 78%, the fly ash to gasification slag is 1:1, and the results show that σ3d = 2.20 MPa, slump = 205 mm, and flow = 199 mm. Taking the solid mass concentration, FA/C, the fly ash content in solid phase, and the coal gangue-to-gasification slag ratio as independent variables, the influence of single-factor and multi-factor interactions of the independent variables are analyzed based on the response surface model. It is found that the solid mass concentration and FA/C have a very significant effect on the early strength. Replacing coal gangue base with fly ash base can effectively reduce the crushing cost and energy consumption and provide low-cost and highly reliable technical reserves for large-scale filling.
  • 关键词:solid waste filling materials; fly ash base; low cost and high reliability; response surface methodology; early strength
国家哲学社会科学文献中心版权所有