标题:Sustainable Valorization of Four Types of Fruit Peel Waste for Biogas Recovery and Use of Digestate for Radish (Raphanus sativus L. cv. Pusa Himani) Cultivation
摘要:Food waste has become a challenging global issue due to its inefficient management, particularly in low and middle-income countries. Among food waste items, fruit peel waste (FPW) is generated in enormous quantities, especially from juice vendors, resulting in arduous tasks for waste management personnel and authorities. However, considering the nutrient and digestible content of organic wastes, in this study four types of FPW (pineapple: PA; sweet lemon: SL; kinnow: KN; and pomegranate: PG) were investigated for their potential use within biogas production, using conventional and electro-assisted anaerobic reactors (CAR and EAR). In addition, the FPW digestate obtained after the biogas production experiments was considered as a soil bio-fertilizer under radish (Raphanussativus L. cv. Pusa Himani) cultivation. In the results, all four types of FPW had digestible organic fractions, as revealed from physicochemical and proximate analysis. However, PA-based FPW yielded the maximum biogas (1422.76 ± 3.10 mL/62.21 ± 0.13% CH4) using the EAR system, compared to all other FPW. Overall, the decreasing order of biogas yield obtained from FPW was observed as PA > PG > SL > KN. The kinetic analysis of the biogas production process showed that the modified Gompertz model best fitted in terms of coefficient of determination (R2 > 0.99) to predict cumulative biogas production (y), lag phase (λ), and specific biogas production rate (µm). Moreover, fertilizer application of spent FPW digestate obtained after biogas production significantly improved the arable soil properties (p < 0.05). Further, KN-based FPW digestate mixing showed maximum improvement in radish plant height (36.50 ± 0.82 cm), plant spread (70.80 ± 3.79 cm2), number of leaves (16.12 ± 0.05), fresh weight of leaves (158.08 ± 2.85 g/plant), fruit yield (140.10 ± 2.13 g/plant), and fruit length (25.05 ± 0.15 cm). Thus, this study suggests an efficient method of FPW management through biogas and crop production.