首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Human variation in population-wide gene expression data predicts gene perturbation phenotype
  • 本地全文:下载
  • 作者:Lorenzo Bonaguro ; Jonas Schulte-Schrepping ; Caterina Carraro
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2022
  • 卷号:25
  • 期号:11
  • 页码:1-24
  • DOI:10.1016/j.isci.2022.105328
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryPopulation-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function “in population” experiment. We describe here an approach,huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset,huvaderives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe howhuvapredicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.Graphical abstractDisplay OmittedHighlights•Human variation can be exploited to generate gain- or loss-of-function experiments•Huvawas used to predict the function of genes central to the immune response•Transcriptome-widehuvaanalysis uncovers the role ofSTAT1in monocytes•Huvais implemented in R as well as accessible via an easy-to-use web interfaceClinical genetics; Pathophysiology; Human genetics.
国家哲学社会科学文献中心版权所有