The interest in, and the need for effective measures to be used in screening, diagnosis, and the follow-up of skeletal pathologies is growing markedly. This paper proposes a completely new and non-invasive technique allowing the study of the human tibia bone marrow (BM) haemodynamics with a time resolution of 1 s. The technique, based on near infrared spectroscopy, is sensitive enough to allow the detection of BM blood volume and/or oxygen saturation changes during orthostatic variations imposed by a tilt bed. An increase in the slope of the bed of 15° is sufficient to detect this phenomenon. The ability to study the possible presence of a neural control of BM haemodynamics is also discussed. No other existing technique currently allows one to obtain the proposed results and this approach might open up a new field of study related to human BM physiology.