In the present paper, the motion of a tethered system with large deformation and large displacement is discussed. In general, a tether is a cable or a wire rope, and a tethered system consists of a tether and the equipment attached to the tether. A tethered subsatellite in space is an example of a tethered system. In the present study, a tethered system consisting of a very flexible body (the tether) and a rigid body at one end is considered as the analytical model. A flexible body in planer motion is described using the Absolute Nodal Coordinate Formulation. Using this formulation, the motion of a flexible body with large deformation, rotation and translation can be expressed with the accuracy of rigid body motion. The combination of the flexible body motion and the rigid body motion is performed, and their interaction is discussed. Experiments are performed to investigate the fundamental motion of the tethered system and to evaluate the validity of the numerical formulation. Experiments were conducted using a steel tether and a rubber tether in gravity space. In addition, an experiment of the motion of the tethered system with a rigid body in microgravity space was conducted.