A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.