In this paper, we propose an autonomous attitude control of a quad tilt wing-unmanned aerial vehicle (QTW-UAV). A QTW-UAV can achieve vertical takeoff and landing; further, hovering flight, which are characteristic of rotary-wing aircraft such as helicopter. And high cruising speeds, which is a characteristic of fixed-wing aircraft, can be also achieved by changing the angle of the rotors and wings by a tilt mechanism. First, we construct an attitude model of the QTW-UAV by using the identification method. We then design the attitude control system with a Kalman filter-based linear quadratic integral (LQI) control method; the experiment results show that a model-based control design is very useful for the autonomous control of a QTW-UAV.