摘要:In the present study, a target level setting method for the reference signal of operational TPA was considered using the principal component regression method. A principal component having a high contribution to the response signal was selected and target levels of the reference signals were set through principal component sensitivity analysis. In addition, a method that can extract the behavior of a principal component having a high contribution to the response signal was considered for the countermeasure. In order to verify the effectiveness of these methods, operational TPA and the proposed methods were applied to a small model vehicle. In the experiment, floor vibration was set as the response signal and nine measurement points, such as motor attachment points, were used as the reference signals. Here, we set the target reduction level of the response point vibration as 5 dB. Next, the target levels of the reference signal were calculated by principal component sensitive analysis and the countermeasure was considered through the principal component behavior analysis. By referring to the analytical result, a countermeasure to reduce the floor vibration was sought. As a result, the floor vibration level was almost reduced to the target level (5 dB). These considerations and experiments indicate that operational TPA could have additional functionality, whereby the method could set reference signal targets and suggest countermeasure guidelines in addition to performing contribution separation.