This paper discusses high speed and non-contact transportation of a steel disk using magnetic levitation and feedforward tilt control. In magnetic levitation systems for handling a thin plate, horizontal slip due to weak horizontal restoring force limits the transportation performance. Tilt control can improve the performance as it can prevent the horizontal slip by compensating inertial force. Previous studies demonstrated the effectiveness of the technique, but their experiments were performed only in a low speed region. This paper applies the tilt control to high-speed transportation in a short distance. In high-speed and short-distance transportation of a disk, angular velocity and acceleration dominate the transportation performance. The paper discusses these factors and proposes a path planning algorithm. Using the algorithm, the paper demonstrates disk transportation for 197 mm within 0.44 seconds. The maximum horizontal acceleration reached 7.9 m/s2 with the maximum tilt angle of 39°. The paper also discusses the effect of vertical acceleration on the tilt control performance.