首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:進化型多数目的最適化における交叉遺伝子数の自己適応 多数目的0/1ナップザック問題における性能検証
  • 本地全文:下载
  • 作者:佐藤 寛之 ; カルロス コエロ ; エルナン アギレ
  • 期刊名称:進化計算学会論文誌
  • 电子版ISSN:2185-7385
  • 出版年度:2012
  • 卷号:3
  • 期号:3
  • 页码:122-132
  • DOI:10.11394/tjpnsec.3.122
  • 出版社:The Japanese Society for Evolutionary Computation
  • 摘要:

    Crossover controlling the number of crossed genes (CCG) significantly improves the search performance of multi-objective evolutionary algorithms (MOEAs) in many-objective optimization problems (MaOPs). CCG controls the number of crossed genes by using a static parameter α. To achieve high search performance by using the static CCG, we have to find out an appropriate parameter α* by conducting many experiments. To avoid time consuming parameter tuning and find out an appropriate α* in a single run of the algorithm, in this work we propose a self-adaptive CCG which dynamically controls the parameter α during the solutions search in a single run of the algorithm. Through experiments using many-objective 0/1 knapsack problems, we show that the values of α controlled by the self-adaptive CCG is converged to an appropriate value even when the self-adaptation is started from any initial values. Also, we show the self-adaptive CCG achieves 80~90% with a single run of the algorithm for the maximum search performance obtained by the static CCG using an optimal α*.

  • 关键词:evolutionary many-objective optimization; self-adaptive control of the number of crossed genes; many-objective 0/1 knapsack problem
国家哲学社会科学文献中心版权所有