首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:多目的最適化問題に対する近似勾配を利用した新たな局所探索手法の提案
  • 本地全文:下载
  • 作者:渡邉 真也 ; 横内 直樹
  • 期刊名称:進化計算学会論文誌
  • 电子版ISSN:2185-7385
  • 出版年度:2012
  • 卷号:3
  • 期号:3
  • 页码:143-154
  • DOI:10.11394/tjpnsec.3.143
  • 出版社:The Japanese Society for Evolutionary Computation
  • 摘要:

    In this paper, a new local search (LS) method using an approximate gradient for multi-objective optimization problems (MOOPs) is proposed. The proposed method has two key features; local Pareto optimality and an interpolation mechanism for capturing the whole of Pareto subsets. First feature aims to guarantee approximate local Pareto optimality for solutions, and second one tries to find the whole of Pareto front. In order to guarantee local Pareto optimality, there are two considerable things; a kind of local optimality condition for MOOPs and a judgment mechanism for detecting whether a solution satisfies the local optimality condition or not. The proposed method uses Frits John conditions, which expand Karush-Kuhn-Tucker (KKT) conditions, and applies steepest descent method to candidate solutions until solutions satisfy this condition. Also, the proposed method incorporates a new interpolation mechanism for detecting local Pareto subsets exhaustively and capturing the entire shape of each Pareto subset. This mechanism is based on fundamental assumptions that non-dominated front is formed by plural non-dominated subsets and it is not difficult to find an entire non-dominated subset within same non-dominated subset. The proposed method is one of posteriori LSs, which are applied to final solutions obtained by EMO (or randomly generated solutions). Since the proposed method is based on an approximate gradient, only continuous typical EMO examples were used for investigating the effectiveness of the proposed method.

  • 关键词:multi-objective optimization problems; local search method; local Pareto optimality; gradient approximation
国家哲学社会科学文献中心版权所有