首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:文法メタ知識による語彙学習加速のコネクショニストモデル
  • 本地全文:下载
  • 作者:下斗米 貴之 ; 遠山 修治 ; 大森 隆司
  • 期刊名称:認知科学
  • 印刷版ISSN:1341-7924
  • 电子版ISSN:1881-5995
  • 出版年度:2003
  • 卷号:10
  • 期号:1
  • 页码:104-111
  • DOI:10.11225/jcss.10.104
  • 出版社:Japanese Cognitive Science Society
  • 摘要:

    In the infancy of human being, it is known that the number of words in speech increase drastically. We think a word acquisition boosting of this period occurs according to the fast mapping in the learning system which is controlled by a meta-information about the language situation. To explain the boosting mechanism, we propose a neural network model of the meta-information that consists of a prediction part, which is a simple recurrent neural network, and a learning evaluation part that controls the fast learning. The learning evaluation part learns a confidence of learning progress as the meta-information from a representation of recurrent network. By a computer simulation study, we show that the meta-information is learnable in spite of its luck of saliency and that the use of meta-information results accelerative learning.

  • 关键词:語彙学習モデル; メタ知識; リカレントネットワーク; 追加学習
国家哲学社会科学文献中心版权所有