首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Extrapolation-Directed Crossover Considering Sampling Bias in Real-coded Genetic Algorithm
  • 本地全文:下载
  • 作者:Jun Sakuma ; Shigenobu Kobayashi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2002
  • 卷号:17
  • 期号:6
  • 页码:699-707
  • DOI:10.1527/tjsai.17.699
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:We propose a new Real-coded GA(RCGA) using the combination of two crossovers, UNDX-m and EDX. The search region of UNDX-m is biased to the inside area that the population of the RCGA covers. Because of this search bias, the GA using UNDX-m causes stagnation of its search if the cost function has a kind of structure, so called, a ridge structure or a multiple-peak structure. In order to overcome this stagnation, we propose a new crossover EDX, whose search is biased toward extrapolative one. Experimental results show that RCGA with EDX can deal with both ridge-structure function whose dimension reaches more than hundreds and multiple-peak function whose optimum resides at the corner of the search area.
  • 关键词:real-coded genetic algorithm ; extrapolation-directed crossover ; sampling bias ; ridge structure ; multiple-peak structure
国家哲学社会科学文献中心版权所有