首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Kernel-based Account of Bibliometric Measures
  • 本地全文:下载
  • 作者:Takahiko Ito ; Masashi Shimbo ; Taku Kudo
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2004
  • 卷号:19
  • 期号:6
  • 页码:530-539
  • DOI:10.1527/tjsai.19.530
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:The application of kernel methods to citation analysis is explored. We show that a family of kernels on graphs provides a unified perspective on the three bibliometric measures that have been discussed independently: relatedness between documents, global importance of individual documents, and importance of documents relative to one or more (root) documents (relative importance). The framework provided by the kernels establishes relative importance as an intermediate between relatedness and global importance, in which the degree of `relativity,' or the bias between relatedness and importance, is naturally controlled by a parameter characterizing individual kernels in the family.
  • 关键词:kernel methods ; link analysis ; citation analysis ; bibliometrics ; relative importance
国家哲学社会科学文献中心版权所有