首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Inter-Personal Information Sharing Model Based on Personalized Recommendations
  • 本地全文:下载
  • 作者:Koji Kamei ; Kaname Funakoshi ; Jun-ichi Akahani
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2004
  • 卷号:19
  • 期号:6
  • 页码:540-547
  • DOI:10.1527/tjsai.19.540
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:In this paper, we propose an inter-personal information sharing model among individuals based on personalized recommendations. In the proposed model, we define an information resource as shared between people when both of them consider it important --- not merely when they both possess it. In other words, the model defines the importance of information resources based on personalized recommendations from identifiable acquaintances. The proposed method is based on a collaborative filtering system that focuses on evaluations from identifiable acquaintances. It utilizes both user evaluations for documents and their contents. In other words, each user profile is represented as a matrix of credibility to the other users' evaluations on each domain of interests. We extended the content-based collaborative filtering method to distinguish other users to whom the documents should be recommended. We also applied a concept-based vector space model to represent the domain of interests instead of the previous method which represented them by a term-based vector space model. We introduce a personalized concept-base compiled from each user's information repository to improve the information retrieval in the user's environment. Furthermore, the concept-spaces change from user to user since they reflect the personalities of the users. Because of different concept-spaces, the similarity between a document and a user's interest varies for each user. As a result, a user receives recommendations from other users who have different view points, achieving inter-personal information sharing based on personalized recommendations. This paper also describes an experimental simulation of our information sharing model. In our laboratory, five participants accumulated a personal repository of e-mails and web pages from which they built their own concept-base. Then we estimated the user profiles according to personalized concept-bases and sets of documents which others evaluated. We simulated inter-personal recommendation based on the user profiles and evaluated the performance of the recommendation method by comparing the recommended documents to the result of the content-based collaborative filtering.
  • 关键词:information sharing ; collaborative filtering ; concept-base ; distributed system
国家哲学社会科学文献中心版权所有