首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Design and Analysis of Convolution Kernels for Tree-Structured Data
  • 本地全文:下载
  • 作者:Hisashi Kashima ; Hiroshi Sakamoto ; Teruo Koyanagi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2006
  • 卷号:21
  • 期号:1
  • 页码:113-121
  • DOI:10.1527/tjsai.21.113
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:We introduce a new convolution kernel for labeled ordered trees with arbitrary subgraph features, and an efficient algorithm for computing the kernel with the same time complexity as that of the parse tree kernel. The proposed kernel is extended to allow mutations of labels and structures without increasing the order of computation time. Moreover, as a limit of generalization of the tree kernels, we show a hardness result in computing kernels for unordered rooted labeled trees with arbitrary subgraph features.
  • 关键词:kernel methods ; convolution kernels ; tree kernels ; support vector machines
国家哲学社会科学文献中心版权所有