首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Mining Quantitative Frequent Itemsets Using Adaptive Density-based Subspace Clustering
  • 本地全文:下载
  • 作者:Yuki Mitsunaga ; Takashi Washio ; Hiroshi Motoda
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2006
  • 卷号:21
  • 期号:5
  • 页码:439-449
  • DOI:10.1527/tjsai.21.439
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:A novel approach to subspace clustering is proposed to exhaustively and efficiently mine quantitative frequent itemsets (QFIs) from massive transaction data for quantitative association rule mining. The numeric part of a QFI is an axis-parallel and hyper-rectangular cluster of transactions in an attribute subspace formed by numeric items. For the computational tractability, our approach introduces adaptive density-based and Apriori-like subspace clustering. Its outstanding performance is demonstrated through the comparison with the past subspace clustering approaches and the application to practical and massive data.
  • 关键词:subspace clustering ; quantitative frequent itemset ; quantitative association rule ; Apriori algorithm ; data mining
国家哲学社会科学文献中心版权所有