首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Smoothing in Semi-Markov Conditional Random Fields
  • 本地全文:下载
  • 作者:Kenta Fukuoka ; Masayuki Asahara ; Yuji Matsumoto
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2007
  • 卷号:22
  • 期号:1
  • 页码:69-77
  • DOI:10.1527/tjsai.22.69
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Linear-chain conditional random fields are a state-of-the-art machine learner for sequential labeling tasks. Altun investigated various loss functions for linear-chain conditional random fields. Tsuboi introduced smoothing method between point-wise loss function and sequential loss function. Sarawagi proposed semi-markov conditional random fields in which variable length of observed tokens are regarded as one node in lattice function. We propose a smoothing method among several loss functions for semi-markov conditional random fields. We draw a comparison among the loss functions and smoothing rate settings in base phrase chunking and named entity recognition tasks.
  • 关键词:sequential labeling ; conditional ramdom fields ; loss functions
国家哲学社会科学文献中心版权所有