首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Real-coded Crossovers as a Role of Kernel Density Estimator Proposal of Crossover Kernels based on Unimordal Normal Distribution Crossover
  • 本地全文:下载
  • 作者:Jun Sakuma ; Shigenobu Kobayashi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2007
  • 卷号:22
  • 期号:5
  • 页码:520-530
  • DOI:10.1527/tjsai.22.520
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:This paper presents a kernel density estimation method by means of real-coded crossovers. Functions of real-coded crossover operators are composed of probabilistic density estimation from parental populations and sampling from estimated models. Real-coded Genetic Algorithm (RCGA) does not explicitly estimate probabilistic distributions, however, probabilistic model estimation is implicitly included in algorithms of real-coded crossovers. Based on this understanding, we exploit the implicit estimation of probabilistic distribution of crossovers as a kernel density estimator. We also propose an application of crossover kernels to Expectation-Maximization estimation (EM) of Gaussian mixtures.
  • 关键词:real-coded GA ; crossover ; kernel ; density estimation ; classification ; mixture model ; expectation maximization ; Gaussian mixture
国家哲学社会科学文献中心版权所有