首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Node Discovery in a Network
  • 本地全文:下载
  • 作者:Yoshiharu Maeno ; Yukio Ohsawa
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2009
  • 卷号:24
  • 期号:5
  • 页码:376-385
  • DOI:10.1527/tjsai.24.376
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Can we discover a node which is not observable directly but mediates the stochastic diffusion process in a network? We address such a node discovery and mathematically formulate the basic concept which is promising to solving the problem in general. The proposed method is tested with a node discovery in a Barabási-Albert model which the conventional method raised and partially succeeded in. Its performance is measured with the receiver operating characteristic curves and van Rijsbergen's F-measure (the harmonic mean of precision and recall). The proposed method succeeds in discovering an unobservable peripheral node, and an unobservable hub node in a less clustered network where the conventional method failed.
  • 关键词:anomaly detection ; Barabási-Albert model ; maximum likelihood estimation ; node discovery
国家哲学社会科学文献中心版权所有