首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation
  • 本地全文:下载
  • 作者:Mamoru Komachi ; Taku Kudo ; Masashi Shimbo
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2010
  • 卷号:25
  • 期号:2
  • 页码:233-242
  • DOI:10.1527/tjsai.25.233
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Bootstrapping has a tendency, called semantic drift , to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
  • 关键词:Bootstrapping ; Link Analysis ; HITS ; Regularized Laplacian ; von Neumann Kernel ; Word Sense Disambiguation ; Semi-supervised Learning
国家哲学社会科学文献中心版权所有