出版社:The Japanese Society for Artificial Intelligence
摘要:Applications of memetic algorithms (MAs) are usually computationally expensive. In this paper we suggest efficient search limiting strategies for local search used in MAs because local search is the most time consuming part of MAs. The suggested strategies are applied to a recently proposed powerful MA for the capacitated vehicle routing problem (CVRP). Experimental results on the well-known benchmarks show a significant speed-up of 80% in running time without worsening the solution quality. Moreover, the MA dominates state-of-the-art heuristics for the CVRP with respect to both the computation time and the solution quality.
关键词:memetic algorithm ; genetic local search ; vehicle routing ; local search