首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Propositionalizing the EM algorithm by BDDs
  • 本地全文:下载
  • 作者:Masakazu Ishihata ; Yoshitaka Kameya ; Taisuke Sato
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2010
  • 卷号:25
  • 期号:3
  • 页码:475-484
  • DOI:10.1527/tjsai.25.475
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:We propose an Expectation-Maximization (EM) algorithm which works on binary decision diagrams (BDDs). The proposed algorithm, BDD-EM algorithm , opens a way to apply BDDs to statistical learning. The BDD-EM algorithm makes it possible to learn probabilities in statistical models described by Boolean formulas, and the time complexity is proportional to the size of BDDs representing them. We apply the BDD-EM algorithm to prediction of intermittent errors in logic circuits and demonstrate that it can identify error gates in a 3bit adder circuit.
  • 关键词:machine learning ; EM algorithm ; binary decision diagram (BDD) ; propositonalized probability computation
国家哲学社会科学文献中心版权所有