首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Community Detection from Signed Networks
  • 本地全文:下载
  • 作者:Takahiko Sugihara ; Xin Liu ; Tsuyoshi Murata
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2013
  • 卷号:28
  • 期号:1
  • 页码:67-76
  • DOI:10.1527/tjsai.28.67
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Many real-world complex systems can be modeled as networks, and most of them exhibit community structures. Community detection from networks is one of the important topics in link mining. In order to evaluate the goodness of detected communities, Newman modularity is widely used. In real world, however, many complex systems can be modeled as signed networks composed of positive and negative edges. Community detection from signed networks is not an easy task, because the conventional detection methods for normal networks cannot be applied directly. In this paper, we extend Newman modularity for signed networks. We also propose a method for optimizing our modularity, which is an efficient hierarchical agglomeration algorithm for detecting communities from signed networks. Our method enables us to detect communities from large scale real-world signed networks which represent relationship between users on websites such as Wikipedia, Slashdot and Epinions.
  • 关键词:community detection ; signed network ; modularity
国家哲学社会科学文献中心版权所有