首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Markov Chain Monte Carlo for Bayesian Inference via Propositionalized Probability Computation
  • 本地全文:下载
  • 作者:Masakazu Ishihata ; Taisuke Sato
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2013
  • 卷号:28
  • 期号:2
  • 页码:230-242
  • DOI:10.1527/tjsai.28.230
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:We propose two Markov chain Monte Carlo (MCMC) methods for Bayesian inference via propositionalized probability computation using binary decision diagrams (BDDs). The main advantage of our methods is that it has no restriction on logical formulas. To illustrate our methods, we first formulate LDA (latent Dirichlet allocation) which is a well-known generative probabilistic model for bag-of-words as a form of statistical abduction, and compare the learning result of our methods with that of an MCMC method called collapsed Gibbs sampling specialized for LDA. We also apply our methods to two problems, one is diagnosis for failure in a logic circuit and the other is evaluating abductive hypotheses for metabolic pathway. The experiment results show Bayesian inference using proposed methods achieves better accuracy than that of Maximum likelihood estimation.
  • 关键词:bayesian inference ; Markov chain Monte Carlo (MCMC) ; propositonalized probability computation (PPC) ; binary decision diagram (BDD)
国家哲学社会科学文献中心版权所有