首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Optimizing Betting Fraction in Compound Reinforcement Learning
  • 本地全文:下载
  • 作者:Tohgoroh Matsui ; Takashi Goto ; Kiyoshi Izumi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2013
  • 卷号:28
  • 期号:3
  • 页码:267-272
  • DOI:10.1527/tjsai.28.267
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:This paper describes optimization of the betting fraction parameter in compound reinforcement learning. Compound reinforcement learning maximizes the expected logarithm of compound returns in return-based MDPs. However, a new betting fraction parameter is introduced in order not to diverge values to negative infinity and it causes a problem of choosing the parameter. In this paper, we proposed a method to optimize the betting fraction with on-line gradient ascent in compound reinforcement learning.
  • 关键词:reinforcement learning ; compound return ; betting fraction ; on-line gradient method
国家哲学社会科学文献中心版权所有