首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Predicting and Evoking Listener's Emotion in Online Dialogue
  • 本地全文:下载
  • 作者:Takayuki Hasegawa ; Nobuhiro Kaji ; Naoki Yoshinaga
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2014
  • 卷号:29
  • 期号:1
  • 页码:90-99
  • DOI:10.1527/tjsai.29.90
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:While there have been many attempts to estimate the emotion of a speaker from her/his utterance, few studies have explored how her/his utterance affects the emotion of the listener. This has motivated us to investigate two novel tasks: predicting the emotion of the listener and generating a response that evokes a specific emotion in the listener's mind. We target Japanese Twitter posts as a source of dialogue data and automatically build training data for learning the predictors and generators. The feasibility of our approaches is assessed by using 1099 utterance-response pairs that are built by five human workers.
  • 关键词:emotion analysis ; response generation ; dialogue
国家哲学社会科学文献中心版权所有