标题:The importance of intensity in the prescription of health training. [La importancia de la intensidad en la prescripción de entrenamiento para la salud].
期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
印刷版ISSN:1885-3137
出版年度:2015
卷号:11
期号:41
页码:192-195
语种:English
出版社:Ramón Cantó Alcaraz (Publisher)
摘要:Traditionally the prescription of physical activity for health has been focused on continuous low-intensity activities. These trainings were oriented to the development or maintenance of cardiorespiratory fitness, prescribing intensities close to 50% of maximal oxygen uptake (VO2max) (ACSM, 1978). These intensity prescriptions have been criticized for their lack of specificity to obtain adaptations and for the often erroneous intensity prescribed, considering using the heart rate reserve (HRR) or reserve oxygen uptake (VO2R) as parameters to prescribe exercise intensity (ACSM, 1998; Karvonen, Kentala and Mustala, 1957). In the same way, others authors proposed the necessity to overcome the mobilization threshold to obtain adaptations, then, the prescribed intensity should be higher, proposing intensities that can reach the 85% of VO2R (ACSM, 2006; Asikainen, et al., 2002; Mors et al., 2004). Although these new intensity requirements, the exercises recommended still based on continuous methodologies, using aerobic exercises like walking, running... Currently, new training methodologies based on high intensity interval and strength exercises are showing major adaptations to different organic systems and greater efficiency than traditional training models based on continuous and low intensity training.http://dx.doi.org/10.5232/ricyde2015.041ed---------------------------------------------------------------------------------References/referenciasAlkahtani, S.A.; Byrne, N.M.; Hills, A.P.; King, N.A. (2014). Interval training intensity affects energy intake compensation in obese men. International Journal of Sport Nutrition Exercise and Metabolism, 24(6): 595-604. http://dx.doi.org/10.1123/ijsnem.2013-0032American College of Sports Medicine (1998). Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine & Science in Sports & Exercise, 30, 975-991.http://dx.doi.org/10.1097/00005768-199806000-00032American College of Sports Medicine (2006). ACSMs Guidelines for Exercise Testing and Prescription. 7 th Edition. Baltimore: Lippincott Williams & WilkinsAmerican College of Sports Medicine. Position Stand (1978). The recommended quantity and quality of exercise for developing and maintaining fitness in healthy adults. Medicine & Science in Sports & Exercise 10, vii-x.Arroyo-Toledo, J.; Clemente-Suárez, V.; Gonzalez, J.; Ramos, D.; Sortwell, D. (2013). Comparison Between Traditional And Reverse Periodization: Swimming Performance And Specific Strength Values. International Journal of Swimming Kinetics. 2(1): 87-96.Asikainen, T. M.; Miilunpalo, S.; Oja, P.; Rinne, M.; Pasanen, M., Uusi.Rasi, K.; Vuori, I. (2002). Randomised, controlled walking trials in postmenopausal women: the minimum dose to improve aerobic fitness?. British Jorunal of Sport Medicine. 36: 189-194.http://dx.doi.org/10.1136/bjsm.36.3.189Benton, C.; Holloway, G.; Han, X.; Yoshida, Y.; Snook, L.; Lally, J.; Glatz, J.; Luiken, J.; Chabowsky, A.; Bonen, A. (2010). Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia, 53, 2008-2019.http://dx.doi.org/10.1007/s00125-010-1773-1Clemente-Suárez, V.; Fernandes, R.; Arroyo-Toledo, J.; Figueredo, P.; González, J.; Vilas-Boas, J. (2015). Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiologica Hungarica, 102(1), 105-113.Deighton, K.; Karra, E.; Batterham, R.L.; Stensel, D.J. (2013). Appetite, energy intake, and PYY3-36 responses to energy-matched continuous exercise and submaximal high-intensity exercise. Applied Physiological Nutrition and Metabolism, 38(9), 947-952.http://dx.doi.org/10.1139/apnm-2012-0484Egan, B.; Carson, B.P.; Garcia-Roves, P.M.; Chibalin, A.V.; Sarsfield, F.M.; Barron, N.; McCaffrey, N.; Moyna, N.M.; Zierath, J.R.; O’Gorman, D.J. (2010). Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. Journal of Physiology, 588, 1779–1790.http://dx.doi.org/10.1113/jphysiol.2010.188011Enoksen, E.; Shalfawi, S.; Tonnessen, E. (2011). The effects of high vs low intensity training on aerobic capacity in well trained middle distance runners. Journal of Strength and Conditioning Research, 25(3), 812-818.http://dx.doi.org/10.1519/JSC.0b013e3181cc2291Gerber, T.; Borg, M.L.; Hayes, A.; Stathis, C.G. (2014). High-intensity intermittent cycling increases purine loss compared with workload-matched continuous moderate intensity cycling. European Journal of Applied Physiology, 114(7), 1513-1520.http://dx.doi.org/10.1007/s00421-014-2878-xGharbi, A. ; Chamari, K. ; Kallel, A., Ahmaidi, S. ; Tabka, Z., & Abdelkarim, Z. (2008). Lactate Kinetics After Intermittent and Continuous Exercise Training. Journal of Sports Science & Medicine, 7(2), 279–285.Gibala, M.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, KA.; Safdar, A.; Raha, S., & Tarnopolsky M. (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575(3), 901-911.http://dx.doi.org/10.1113/jphysiol.2006.112094Gibala, M.; Little, J.; MacDonald, M.; Hawley, J. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology, 590(Pt 5), 1077–1084.http://dx.doi.org/10.1113/jphysiol.2011.224725Hood, M.S.; Little, J.P.; Tarnopolsky, M.A.; Myslik, F., & Gibala, M.J. (2011). Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine & Science in Sports & Exercise, 43, 1849–1856.http://dx.doi.org/10.1249/MSS.0b013e3182199834Karvonen, M. J.; Kentala, E., & Mustala, O. (1957). The effects of training on heart rate: a longitudinal study. Annales Medicinae Experimentalis Et Biologiae Fenniae, 35, 307-315.http://www.ncbi.nlm.nih.gov/pubmed/13470504Leggate, M.; Carter, W.G.; Evans, M.J.; Vennard, R.A.; Sribala-Sundaram, S.; Nimmo, M.A. (1985). Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. Journal of Applied Physiology, 112(8), 1353-1360.http://dx.doi.org/10.1152/japplphysiol.01080.2011Little, J.P.; Jung, M.E.; Wright, A.E.; Wright, W.; Manders, R.J. (2014). Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Applied Physiological Nutrition and Metabolism, 39(7), 835-841.http://dx.doi.org/10.1139/apnm-2013-0512Little, J.P., & Cochran A. (2011). Regulating the regulators: the role of transcriptional regulatory proteins in the adaptive response to exercise in human skeletal muscle. Journal of Physiology, 589(7), 1511-1512.http://dx.doi.org/10.1113/jphysiol.2011.205401McKean, M.R.; Stockwell, T.B.; Burkett, B.J. (2012). Response to Constant and Interval Exercise Protocols in the Elderly. Journal of Exercise Physiology online, 15(2), 30-39.Mancilla, R.; Torres, P.; Álvarez, C.; Schifferli, I.; Sapunar, J.; Díaz, E. (2014). High intensity interval training improves glycemic control and aerobic capacity in glucose intolerant patients. Revista Medica Chilena, 142(1), 34-39.http://dx.doi.org/10.4067/S0034-98872014000100006Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Løvø, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisløff, U.; Slørdahl, S.A. (2009). Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. American Heart Journal, 158, 1031–1037.http://dx.doi.org/10.1016/j.ahj.2009.10.003Morss G. M.; Jordan A. N.; Skinner J. S.; Dunn, A.L.; Church, T.S.; Earnest, C.P.; Kampert, J.B.; Jurca, R.; Blair, S.N. (2004). Dose-response to exercise in women aged 45-75 yr (DREW): Design and Rationale. Medicine & Science in Sports & Exercise, 36, 336-344.http://dx.doi.org/10.1249/01.MSS.0000113738.06267.E5Perry, C.G.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology Nutrition and Metabolism, 33(6), 1112-1123.http://dx.doi.org/10.1139/H08-097Pintar, J. A.; Robertson, R. J.; Kriska, A. M.; Nagle, E., & Goss, F. L. (2006). The influence of fitness and body weight on preferred exercise intensity. Medicine & Science in Sports & Exercise, 38, 981-988.http://dx.doi.org/10.1249/01.mss.0000218128.66077.97Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European Journal of Applied Physiology, 13(10), 2531-40.http://dx.doi.org/10.1007/s00421-013-2689-5Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J., & Slørdahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Cardiovascular Preventive Rehabilitation, 11, 216–222.http://dx.doi.org/10.1097/01.hjr.0000131677.96762.0cSandri, M.; Lin, J.; Handschin, C.; Yang, W.; Arany, Z.P.; Lecker, S.H.; Goldberg, A.L.; Spiegelman, B.M. (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16260-16265.http://dx.doi.org/10.1073/pnas.0607795103Sandri, M.; Lin, J.; Handschin, C.; Yang, W.; Arany, Z.P.; Lecker, S.H.; Goldberg, A.L., & Spiegelman, B.M. (2006). PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences, 103, 16260–16265.http://dx.doi.org/10.1073/pnas.0607795103Schjerve, I.E.; Tyldum, G.A.; Tjønna, A.E.; Stølen, T.; Loennechen, J.P.; Hansen, H.E.; Haram, P.M.; Heinrich, G.; Bye, A.; Najjar, S.M.; Smith, G.L.; Slørdahl, S.A.; Kemi, O.J., & Wisløff, U. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science (London), 115, 283–293.http://dx.doi.org/10.1042/CS20070332Shiraev, T., Barclay, G. (2012). Evidence based exercise - clinical benefits of high intensity interval training. Australian Family Physician, 41(12), 960-962.http://www.ncbi.nlm.nih.gov/pubmed/23210120Tabata, I. ; Irisawa, K. ; Kouzaki, M. ; Nishimura, K. ; Ogita, F. ; Miyachi, M. (1997). Metabolic profile of high intensity intermittent exercises. Medicine & Science in Sports & Exercise, 29, 390-395.http://dx.doi.org/10.1152/japplphysiol.01098.2006Talanian, J.L.; Galloway, S.D.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. (1985). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology, 102(4), 1439-1447.Terada, S.; Tabatat, I., & Higuchi, M. (2004). Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Japanese Journal of Physiology, 54(1), 42-52.http://dx.doi.org/10.2170/jjphysiol.54.47Terada, S.; Yokozeki, T.; Kawanaka, K.; Ogawa, K.; Higuchi, M.; Ezaki, O., & Tabata, I. (2001). Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. Journal of Applied Physiology, 90, 2019–2024.http://www.ncbi.nlm.nih.gov/pubmed/11356760Tjonna, A.; Leinan, I.; Bartnes A.; Jonssen, B.; Gibala, M.; Winett, R.; Wisloff, U. (2013). Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLOSONE, 8(5), pp? http://dx.doi.org/10.1371/journal.pone.0065382Wenz, T.; Rossi, S.; Rotundo, R.; Spiegelman, B.; Moraes, C. (2009). Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Biological Sciences - Medical Sciences, 106(48), 20405-20410.Weston, K.S.; Wisløff, U.; Coombes, J.S. ( 2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sport Medicine, 48(16), 1227-12234.http://dx.doi.org/10.1136/bjsports-2013-092576Whyte, L.J.; Gill, J.M., & Cathcart, A.J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59, 1421–1428.http://dx.doi.org/10.1016/j.metabol.2010.01.002Wilmore, J. H., y Costill. D. (2004). Fisiología del esfuerzo y del deporte. 5Ed. Paidotribo. Barcelona.Wisløff, U.; Ellingsen, Ø., & Kemi, O.J. (2009). High-intensity interval training to maximize cardiac benefits of exercise training? Exercise Sport Science Review, 37, 139–146.http://dx.doi.org/10.1097/JES.0b013e3181aa65fcWisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A., Lee, S.J.; Videm, V.; Bye, A.; Smith, G.L.; Najjar, S.M.; Ellingsen, Ø.; Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115(24), 3086-3094.http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675041Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; Spiegelman, B.M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1), 115-124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X
其他摘要:Traditionally the prescription of physical activity for health has been focused on continuous low-intensity activities. These trainings were oriented to the development or maintenance of cardiorespiratory fitness, prescribing intensities close to 50% of maximal oxygen uptake (VO2max) (ACSM, 1978). These intensity prescriptions have been criticized for their lack of specificity to obtain adaptations and for the often erroneous intensity prescribed, considering using the heart rate reserve (HRR) or reserve oxygen uptake (VO2R) as parameters to prescribe exercise intensity (ACSM, 1998; Karvonen, Kentala and Mustala, 1957). In the same way, others authors proposed the necessity to overcome the mobilization threshold to obtain adaptations, then, the prescribed intensity should be higher, proposing intensities that can reach the 85% of VO2R (ACSM, 2006; Asikainen, et al., 2002; Mors et al., 2004). Although these new intensity requirements, the exercises recommended still based on continuous methodologies, using aerobic exercises like walking, running... Currently, new training methodologies based on high intensity interval and strength exercises are showing major adaptations to different organic systems and greater efficiency than traditional training models based on continuous and low intensity training. http://dx.doi.org/10.5232/ricyde2015.041ed --------------------------------------------------------------------------------- References/referencias Alkahtani, S.A.; Byrne, N.M.; Hills, A.P.; King, N.A. (2014). Interval training intensity affects energy intake compensation in obese men. International Journal of Sport Nutrition Exercise and Metabolism , 24 (6): 595-604. http://dx.doi.org/10.1123/ijsnem.2013-0032 American College of Sports Medicine (1998). Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine & Science in Sports & Exercise, 30, 975-991. http://dx.doi.org/10.1097/00005768-199806000-00032 American College of Sports Medicine (2006). ACSMs Guidelines for Exercise Testing and Prescription . 7 th Edition. Baltimore: Lippincott Williams & Wilkins American College of Sports Medicine. Position Stand (1978). The recommended quantity and quality of exercise for developing and maintaining fitness in healthy adults. Medicine & Science in Sports & Exercise 10, vii-x. Arroyo-Toledo, J.; Clemente-Suárez, V.; Gonzalez, J.; Ramos, D.; Sortwell, D. (2013). Comparison Between Traditional And Reverse Periodization: Swimming Performance And Specific Strength Values. International Journal of Swimming Kinetics . 2 (1): 87-96. Asikainen, T. M.; Miilunpalo, S.; Oja, P.; Rinne, M.; Pasanen, M., Uusi.Rasi, K.; Vuori, I. (2002). Randomised, controlled walking trials in postmenopausal women: the minimum dose to improve aerobic fitness?. British Jorunal of Sport Medicine . 36: 189-194. http://dx.doi.org/10.1136/bjsm.36.3.189 Benton, C.; Holloway, G.; Han, X.; Yoshida, Y.; Snook, L.; Lally, J.; Glatz, J.; Luiken, J.; Chabowsky, A.; Bonen, A. (2010). Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia, 53, 2008-2019. http://dx.doi.org/10.1007/s00125-010-1773-1 Clemente-Suárez, V.; Fernandes, R.; Arroyo-Toledo, J.; Figueredo, P.; González, J.; Vilas-Boas, J. (2015). Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiologica Hungarica , 102 (1), 105-113. Deighton, K.; Karra, E.; Batterham, R.L.; Stensel, D.J. (2013). Appetite, energy intake, and PYY3-36 responses to energy-matched continuous exercise and submaximal high-intensity exercise. Applied Physiological Nutrition and Metabolism, 38 (9), 947-952. http://dx.doi.org/10.1139/apnm-2012-0484 Egan, B.; Carson, B.P.; Garcia-Roves, P.M.; Chibalin, A.V.; Sarsfield, F.M.; Barron, N.; McCaffrey, N.; Moyna, N.M.; Zierath, J.R.; O’Gorman, D.J. (2010). Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. Journal of Physiology , 588, 1779–1790. http://dx.doi.org/10.1113/jphysiol.2010.188011 Enoksen, E.; Shalfawi, S.; Tonnessen, E. (2011). The effects of high vs low intensity training on aerobic capacity in well trained middle distance runners. Journal of Strength and Conditioning Research, 25(3), 812-818. http://dx.doi.org/10.1519/JSC.0b013e3181cc2291 Gerber, T.; Borg, M.L.; Hayes, A.; Stathis, C.G. (2014). High-intensity intermittent cycling increases purine loss compared with workload-matched continuous moderate intensity cycling. European Journal of Applied Physiology , 114 (7), 1513-1520. http://dx.doi.org/10.1007/s00421-014-2878-x Gharbi, A. ; Chamari, K. ; Kallel, A., Ahmaidi, S. ; Tabka, Z., & Abdelkarim, Z. (2008). Lactate Kinetics After Intermittent and Continuous Exercise Training. Journal of Sports Science & Medicine , 7 (2), 279–285. Gibala, M.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, KA.; Safdar, A.; Raha, S., & Tarnopolsky M. (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. Journal of Physiology, 575 (3), 901-911. http://dx.doi.org/10.1113/jphysiol.2006.112094 Gibala, M.; Little, J.; MacDonald, M.; Hawley, J. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology , 590 (Pt 5), 1077–1084. http://dx.doi.org/10.1113/jphysiol.2011.224725 Hood, M.S.; Little, J.P.; Tarnopolsky, M.A.; Myslik, F., & Gibala, M.J. (2011). Low-volume interval training improves muscle oxidative capacity in sedentary adults. Medicine & Science in Sports & Exercise, 43, 1849–1856. http://dx.doi.org/10.1249/MSS.0b013e3182199834 Karvonen, M. J.; Kentala, E., & Mustala, O. (1957). The effects of training on heart rate: a longitudinal study. Annales Medicinae Experimentalis Et Biologiae Fenniae, 35, 307-315. http://www.ncbi.nlm.nih.gov/pubmed/13470504 Leggate, M.; Carter, W.G.; Evans, M.J.; Vennard, R.A.; Sribala-Sundaram, S.; Nimmo, M.A. (1985). Determination of inflammatory and prominent proteomic changes in plasma and adipose tissue after high-intensity intermittent training in overweight and obese males. Journal of Applied Physiology, 112(8), 1353-1360. http://dx.doi.org/10.1152/japplphysiol.01080.2011 Little, J.P.; Jung, M.E.; Wright, A.E.; Wright, W.; Manders, R.J. (2014). Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Applied Physiological Nutrition and Metabolism, 39(7), 835-841. http://dx.doi.org/10.1139/apnm-2013-0512 Little, J.P., & Cochran A. (2011). Regulating the regulators: the role of transcriptional regulatory proteins in the adaptive response to exercise in human skeletal muscle. Journal of Physiology, 589 (7), 1511-1512. http://dx.doi.org/10.1113/jphysiol.2011.205401 McKean, M.R.; Stockwell, T.B.; Burkett, B.J. (2012). Response to Constant and Interval Exercise Protocols in the Elderly. Journal of Exercise Physiology online, 15 (2), 30-39. Mancilla, R.; Torres, P.; Álvarez, C.; Schifferli, I.; Sapunar, J.; Díaz, E. (2014). High intensity interval training improves glycemic control and aerobic capacity in glucose intolerant patients. Revista Medica Chilena , 142 (1), 34-39. http://dx.doi.org/10.4067/S0034-98872014000100006 Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Løvø, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisløff, U.; Slørdahl, S.A. (2009). Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: a randomized study of cardiovascular effects and quality of life. American Heart Journal , 158, 1031–1037. http://dx.doi.org/10.1016/j.ahj.2009.10.003 Morss G. M.; Jordan A. N.; Skinner J. S.; Dunn, A.L.; Church, T.S.; Earnest, C.P.; Kampert, J.B.; Jurca, R.; Blair, S.N. (2004). Dose-response to exercise in women aged 45-75 yr (DREW): Design and Rationale. Medicine & Science in Sports & Exercise, 36, 336-344. http://dx.doi.org/10.1249/01.MSS.0000113738.06267.E5 Perry, C.G.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology Nutrition and Metabolism , 33 (6), 1112-1123. http://dx.doi.org/10.1139/H08-097 Pintar, J. A.; Robertson, R. J.; Kriska, A. M.; Nagle, E., & Goss, F. L. (2006). The influence of fitness and body weight on preferred exercise intensity. Medicine & Science in Sports & Exercise, 38, 981-988. http://dx.doi.org/10.1249/01.mss.0000218128.66077.97 Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European Journal of Applied Physiology , 13(10), 2531-40. http://dx.doi.org/10.1007/s00421-013-2689-5 Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J., & Slørdahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Cardiovascular Preventive Rehabilitation, 11, 216–222. http://dx.doi.org/10.1097/01.hjr.0000131677.96762.0c Sandri, M.; Lin, J.; Handschin, C.; Yang, W.; Arany, Z.P.; Lecker, S.H.; Goldberg, A.L.; Spiegelman, B.M. (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 103 (44), 16260-16265. http://dx.doi.org/10.1073/pnas.0607795103 Sandri, M.; Lin, J.; Handschin, C.; Yang, W.; Arany, Z.P.; Lecker, S.H.; Goldberg, A.L., & Spiegelman, B.M. (2006). PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences, 103, 16260–16265. http://dx.doi.org/10.1073/pnas.0607795103 Schjerve, I.E.; Tyldum, G.A.; Tjønna, A.E.; Stølen, T.; Loennechen, J.P.; Hansen, H.E.; Haram, P.M.; Heinrich, G.; Bye, A.; Najjar, S.M.; Smith, G.L.; Slørdahl, S.A.; Kemi, O.J., & Wisløff, U. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science (London), 115, 283–293. http://dx.doi.org/10.1042/CS20070332 Shiraev, T., Barclay, G. (2012). Evidence based exercise - clinical benefits of high intensity interval training. Australian Family Physician , 41 (12), 960-962. http://www.ncbi.nlm.nih.gov/pubmed/23210120 Tabata, I. ; Irisawa, K. ; Kouzaki, M. ; Nishimura, K. ; Ogita, F. ; Miyachi, M. (1997). Metabolic profile of high intensity intermittent exercises. Medicine & Science in Sports & Exercise , 29, 390-395. http://dx.doi.org/10.1152/japplphysiol.01098.2006 Talanian, J.L.; Galloway, S.D.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. (1985). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology , 102(4), 1439-1447. Terada, S.; Tabatat, I., & Higuchi, M. (2004). Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Japanese Journal of Physiology , 54 (1), 42-52. http://dx.doi.org/10.2170/jjphysiol.54.47 Terada, S.; Yokozeki, T.; Kawanaka, K.; Ogawa, K.; Higuchi, M.; Ezaki, O., & Tabata, I. (2001). Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. Journal of Applied Physiology , 90, 2019–2024. http://www.ncbi.nlm.nih.gov/pubmed/11356760 Tjonna, A.; Leinan, I.; Bartnes A.; Jonssen, B.; Gibala, M.; Winett, R.; Wisloff, U. (2013). Low- and High-Volume of Intensive Endurance Training Significantly Improves Maximal Oxygen Uptake after 10-Weeks of Training in Healthy Men. PLOSONE, 8(5), pp? http://dx.doi.org/10.1371/journal.pone.0065382 Wenz, T.; Rossi, S.; Rotundo, R.; Spiegelman, B.; Moraes, C. (2009). Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Biological Sciences - Medical Sciences, 106 (48), 20405-20410. Weston, K.S.; Wisløff, U.; Coombes, J.S. ( 2014). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sport Medicine, 48(16), 1227-12234. http://dx.doi.org/10.1136/bjsports-2013-092576 Whyte, L.J.; Gill, J.M., & Cathcart, A.J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59, 1421–1428. http://dx.doi.org/10.1016/j.metabol.2010.01.002 Wilmore, J. H., y Costill. D. (2004). Fisiología del esfuerzo y del deporte . 5Ed. Paidotribo. Barcelona. Wisløff, U.; Ellingsen, Ø., & Kemi, O.J. (2009). High-intensity interval training to maximize cardiac benefits of exercise training? Exercise Sport Science Review, 37, 139–146. http://dx.doi.org/10.1097/JES.0b013e3181aa65fc Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A., Lee, S.J.; Videm, V.; Bye, A.; Smith, G.L.; Najjar, S.M.; Ellingsen, Ø.; Skjaerpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation , 115 (24), 3086-3094. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675041 Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; Spiegelman, B.M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell , 98 (1), 115-124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X