首页    期刊浏览 2025年08月29日 星期五
登录注册

文章基本信息

  • 标题:Multivariate Statistical Approach for Anomaly Detection and Lost Data Recovery in Wireless Sensor Networks
  • 本地全文:下载
  • 作者:Roberto Magán-Carrión ; José Camacho ; Pedro García-Teodoro
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2015
  • 卷号:2015
  • DOI:10.1155/2015/672124
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Data loss due to integrity attacks or malfunction constitutes a principal concern in wireless sensor networks (WSNs). The present paper introduces a novel data loss/modification detection and recovery scheme in this context. Both elements, detection and data recovery, rely on a multivariate statistical analysis approach that exploits spatial density, a common feature in network environments such as WSNs. To evaluate the proposal, we consider WSN scenarios based on temperature sensors, both simulated and real. Furthermore, we consider three different routing algorithms, showing the strong interplay among (a) the routing strategy, (b) the negative effect of data loss on the network performance, and (c) the data recovering capability of the approach. We also introduce a novel data arrangement method to exploit the spatial correlation among the sensors in a more efficient manner. In this data arrangement, we only consider the nearest nodes to a given affected sensor, improving the data recovery performance up to 99%. According to the results, the proposed mechanisms based on multivariate techniques improve the robustness of WSNs against data loss.
国家哲学社会科学文献中心版权所有